Department of Chemical Biology
Yang's Lab,Department of Chemical Biology, Xiamen University
Home > News > Yihao Huang's paper accepted by ACS nano

Professor Yang

Know more>> Professor Department of Chemical Biology, Xiamen University

Contact Information

Yang's Laboratory

Room 532, Lujiaxi Building, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Ph: +86 (0) 592-218 7601

Yihao Huang's paper accepted by ACS nano

2024-03-12 20:28:23

Health diagnostic tools for community safety and environmental monitoring require selective and quantitatively accurate active viral load assessment. Herein, we report a microfluidic enrichment strategy to separate intact SARS-CoV-2 particles by AND logic gate with inputs of cholesterol oligonucleotides for the envelope, and aptamers for the spike viral proteins. Considering the unequal quantity of endogenous spikes and lipid membranes on SARS-CoV-2, a dual-domain binding strategy, with two aptamers targeting different spike domains, was applied to balance the spike-envelope stoichiometric ratio. By balancing the stoichiometric with DNA computation, and promoting microscale mass transfer of herringbone chip, the developed strategy enabled high sensitivity detection of pseudotyped SARS-CoV-2 with a limit of detection as low as 37 active virions/μL while distinguishing it from inactive counterparts, other nontarget viruses, and free spike protein. Moreover, the captured viral particles can be released through DNase I treatment with up to 90% efficiency, which is fully compatible with virus culture and sequencing. Overall, the developed strategy not only identified SARS-CoV-2-infected patients (n = 14) with 100% identification from healthy donors (n = 8) but also provided a fresh perspective on regulation of stoichiometric ratio to achieve a more biologically relevant DNA computation.